## Oberton 15 NXB 700



### **KEY FEATURES:**

- 97 db 1W / 1m average sensitivity
- 100 mm high temperature sandwich voice coil
- 2000 W AES program power
- Vented neodymium magnet assembly with massive heatsink
- Triple aluminium demodulating rings for lower distortion and improved heat dissipation
- Double silicon spider for improved excursion control and linearity
- Water protected cone (front)

### **Application: Power bass**

The 15NXB700 is neodymium bass loudspeaker designed to deliver high impact bass response, with exceptional high power capacity. It features 25 mm high sandwich voice coil, aluminium die cast frame with integrated triple aluminium demodulating rings and vented neodymium magnet structure. The massive heatsink improve the cooling of the magnet structure, which reduce power compression. This results in an incredible high efficient transducer for subwoofer applications, with the ability to handle high excursion with low distortion and reduced thermal power compression. It is suitable for tuned reflex or horn loaded enclosures for high level subwoofer applications.

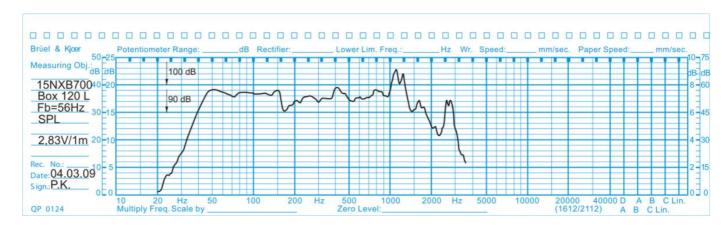
# SPECIFICATIONS Nominal Diameter

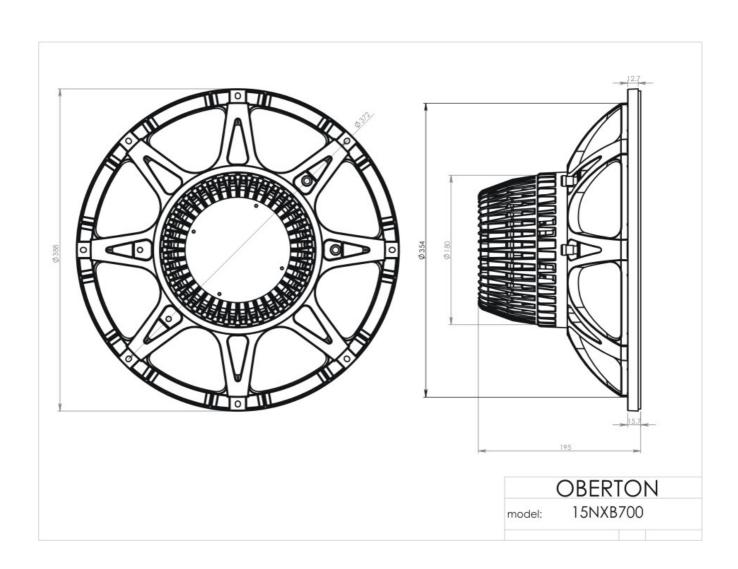
| Impedance                       | 8 Ohm                  |
|---------------------------------|------------------------|
| Minimum Impedance               | 7.23 Ohm               |
| Power Capacity AES <sup>1</sup> | 1000 W                 |
| Program Power <sup>2</sup>      | 2000 W                 |
| Sensitivity                     | (50-1000 Hz) 97 dB/W/m |
| Frequency Range                 | 38 - 1000 Hz           |
| Voice Coil Diameter             | 100 mm                 |
| Voice Coil Material             | Copper                 |
| Voice Coil Former               | Glassfiber             |
| Voice Coil Winding Depth        | 25 mm                  |
| Magnet Gap Depth                | 14 mm                  |
| Cone Material                   | Kevlar paper           |
| Basket                          | Die Cast Aluminium     |
| Magnet                          | Neodymium              |
| Flux Density                    | 1.00 T                 |
|                                 |                        |

1. AES standard. Power is calculated on rated minimum impedance. Measurement is in 125 L box enclosure tuned 56 Hz using a 40-400 Hz band limited pink noise test signal applied continuously for 2 hours.

15"/388 inch/mm

- 2. Program power is defined as 3db greater than AES Power Capacity.
- \* Linear Mathematical Xmax is calculated as: (Hvc Hg)/2 + Hg/4 where Hvc is the voice coil depth and Hg is the gap depth.


#### THIELE-SMALL PARAMETERS


| Resonance Frequency                           | 38.34 Hz              |
|-----------------------------------------------|-----------------------|
| Mechanical Efficiency Factor (Qms)            | 8.75                  |
| Electrical Efficiency Factor (Qes)            | 0.293                 |
| Total Q (Qts)                                 | 0.283                 |
| Equivalent Air Volume (Vas )                  | 105.50 litres         |
| Diaphragm mass ind. airload (Mms)             | 156.94 grams          |
| Voice Coil Resistance Re                      | 5.23 Ohms             |
| Effective Diagram Area (Sd)                   | 829.6 cm <sup>2</sup> |
| Peak Linear Displacement of Diaphragm (Xmax)* | ±9 mm                 |
| Mechanical Compliance of Suspension (Cms)     | 0.11 mm/N             |
| BL Product (BL)                               | 25.99 T.m             |
| V.C. Inductance at 1 kHz (Le)                 | 1.98 mH               |
|                                               |                       |

### MOUNTING INFORMATION

| Overall Diameter         | 388 mm           |
|--------------------------|------------------|
| Baffle Hole Diameter     | 354 mm           |
| Number of Mounting Holes | 8 eliptic 7x8 mm |
| Bolt Circle Diameter     | 370/372 mm       |
| Overall Depth            | 195 mm           |
| Net Weight               | 8.1 kg           |
|                          |                  |

## Frequency Responce



